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Taking into account the frame-invariance of a model expression under arbitrarily
rotating transformations, Weis & Hutter (J. Fluid Mech. vol. 476, 2003, p. 63) proposed
a Euclidean-objective weak-equilibrium condition for the algebraic Reynolds stress
model (ARSM). However, Gatski & Wallin (J. Fluid Mech. vol. 518, 2004, p. 147)
pointed out that the weak-equilibrium condition proposed is not correct in actual
rotating flows such as a rotating channel flow and showed that a non-objective weak-
equilibrium condition extended to curved and rotating flows should be assumed. The
frame-invariance is an important issue not only for the ARSM but also for general
nonlinear eddy-viscosity models. By introducing the corotational derivative of the
Reynolds stress, the transport equation for the Reynolds stress can be written to be
frame-invariant. It is shown that a frame-invariant expression is desirable as a general
model by comparing the error of model expressions in different rotating frames. The
extended weak-equilibrium condition of Gatski & Wallin is examined to show that it
is in reality objective and it does not contradict a frame-invariant model expression
for the Reynolds stress.

1. Introduction
In order to overcome the deficiencies associated with linear eddy-viscosity models,

various nonlinear eddy-viscosity models have been developed (Yoshizawa 1984;
Speziale 1987; Gatski & Jongen 2000). In particular, the explicit algebraic Reynolds
stress model (ARSM) attracts interest because it represents a solution of the implicit
ARSM that accurately treats the Reynolds stress anisotropy (Pope 1975; Gatski &
Speziale 1993; Girimaji 1996; Wallin & Johansson 2000). In the ARSM, an algebraic
equation is derived from the differential Reynolds stress model by assuming the
weak-equilibrium condition; that is, the material derivative of the Reynolds stress
anisotropy tensor is assumed to vanish. In the traditional ARSM for flows in a
rotating frame the weak-equilibrium assumption is the same as that for an inertial
frame. Weis & Hutter (2003) argued that existing models making use of this weak-
equilibrium condition in a rotating frame are not frame-invariant under arbitrarily
rotating (Euclidean) transformations and that a model expression should be frame-
invariant because the choice of the coordinate system should not affect the adequacy
of the model. To remedy this deficiency they proposed a Euclidean-objective weak-
equilibrium condition to make models frame-invariant. However, Gatski & Wallin
(2004) showed that the objective weak-equilibrium condition of Weis & Hutter (2003)
is not correct in actual rotating flows such as rotating homogeneous shear and
rotating channel flows. They stated that a non-objective weak-equilibrium condition
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taking into account flow rotation and curvature should be assumed and that a non-
invariant model is justified because the transport equation for the Reynolds stress is
not frame-invariant.

Euclidean invariance is an important property of physical laws. Whether a model
expression for the Reynolds stress should be frame-invariant or not is an important
issue not only for the ARSM but also for general nonlinear eddy-viscosity models. If
the frame-invariance is required, it can be a useful constraint for theoretical modelling
of nonlinear eddy-viscosity models. The time-derivative part of the transport equation
for the Reynolds stress contains two additional terms involving the system rotation
tensor. Gatski & Wallin (2004) argued that the transport equation is not frame-
invariant because it involves the system rotation tensor. However, by introducing the
corotational derivative of the Reynolds stress, the transport equation can be rewritten
to be frame-invariant. It is expected that a model expression for the Reynolds stress
should also be frame-invariant.

In this paper, we investigate the contradiction between the statement by Weis &
Hutter (2003) that a model expression for the Reynolds stress should be frame-
invariant and the objection by Gatski & Wallin (2004) that the objective weak-
equilibrium condition is not correct. The fact that an objective condition proposed by
Weis & Hutter (2003) is incorrect does not necessarily mean that weak-equilibrium
conditions do not have to be objective. We will explain that the extended weak-
equilibrium condition described by Gatski & Wallin (2004) is in reality objective and
that the extended condition does not contradict a frame-invariant model expression
for the Reynolds stress.

2. Objective variables and corotational derivative
Following Weis & Hutter (2003) we describe how the relevant variables appearing

in the transport equation for the Reynolds stress transform between inertial and
rotating frames. For simplicity, we consider the transformations between the two
frames with the same origin. The space coordinates x∗

i in the inertial frame transform
to the coordinates xi in the rotating frame as

xi = Qijx
∗
j , (2.1)

where Qij is an orthogonal transformation matrix. Variables expressed in the inertial
frame are identified by asterisk. The system rotation tensor or the rotation rate of the
xi system expressed in the xi system is given by

Ωij = Qik

dQT
kj

dt
= εjikΩk, (2.2)

where QT
ij is the transpose of Qij , εijk is the permutation tensor, and Ωi is the system

rotation vector.
A vector fi and a tensor fij that transform according to

fi = Qijf
∗
j , fij = Qikf

∗
kmQT

mj , (2.3)

are called objective variables. The transport equation for the Reynolds stress involves
both objective and non-objective variables. The Reynolds stress Rij (= 〈u′

iu
′
j 〉), the

Reynolds stress anisotropy tensor aij =Rij/K − 2
3
δij , and the mean strain-rate tensor

Sij [= (∂Ui/∂xj +∂Uj/∂xi)/2] are objective, where Ui(= 〈ui〉) and u′
i(= ui −Ui) represent

the mean and fluctuating velocity fields and K(= 〈u′2
i 〉/2) is the turbulent kinetic
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energy. On the other hand, the mean vorticity tensor Wij [ = (∂Ui/∂xj − ∂Uj/∂xi)/2]
is not objective because it transforms as

W ∗
ij = QT

ik(Wkm + Ωkm)Qmj . (2.4)

The mean vorticity tensor can be made objective by adding the system rotation tensor:

W̄ij = Wij + Ωij , (2.5)

where W̄ij is called the mean absolute vorticity tensor.
Similarly, the material derivative of the Reynolds stress, DRij/Dt (where

D/Dt = ∂/∂t + Ui∂/∂xi), is not objective because it transforms as

DR∗
ij

Dt

(
≡

∂R∗
ij

∂t
+ U ∗

k

∂R∗
ij

∂x∗
k

)
= QT

ik

(
DRkm

Dt
+ ΩknRnm − RknΩnm

)
Qmj . (2.6)

Like the mean absolute vorticity tensor W̄ij , this material derivative can be made
objective by adding terms involving the system rotation tensor:

D̄Rij

Dt
=

DRij

Dt
+ ΩikRkj − RikΩkj . (2.7)

Here, we call D̄Rij/Dt the corotational derivative of Rij (Thiffeault 2001). The material
derivative of the anisotropy tensor aij also transforms like (2.6) and its corotational
derivative D̄aij /Dt can be defined in the same form as (2.7).

Next, we examine the transformation properties of the transport equation for the
Reynolds stress. The transport equation for Rij in a rotating frame can be written as

DRij

Dt
+ ΩikRkj − RikΩkj = −Rik(Skj − W̄kj ) − (Sik + W̄ik)Rkj − εij + Πij + Dij , (2.8)

where εij , Πij , and Dij are the dissipation, pressure–strain, and diffusion terms,
respectively. The three terms can be considered objective because they are expressed
in terms of objective variables such as the velocity and pressure fluctuations and their
spatial derivatives (detailed expressions are omitted here). For the transport equation
for aij corresponding to (2.8), Gatski & Wallin (2004) noted that the complete left-
hand side represents the advection of the anisotropy tensor in a rotating frame
and the right-hand side is written in terms of objective tensors, but the transport
equation is not frame-invariant because it explicitly contains the system rotation
tensor Ωij . However, as shown in Weis & Hutter (2003), (2.8) can be rewritten using
the corotational derivative of Rij as follows:

D̄Rij

Dt
= −Rik(Skj − W̄kj ) − (Sik + W̄ik)Rkj − εij + Πij + Dij . (2.9)

Since the corotational derivative D̄Rij/Dt can be considered as an objective variable
like W̄ij , we believe that (2.9) is frame-invariant and hence a model expression for the
Reynolds stress should also be frame-invariant as stated by Weis & Hutter (2003).

3. Weak-equilibrium condition for the algebraic Reynolds stress model
Now, we investigate the transformation properties of the ARSM equation. To

obtain an explicit model expression, a quasi-linear model for the pressure–strain and
dissipation terms Πij − εij is considered (Wallin & Johansson 2002). The transport
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equation for the anisotropy tensor aij in a rotating frame is then written as

τ

A0

(
D̄aij

Dt
− D

(a)
ij

)
=

(
A3 + A4

P

ε

)
aij + A1Ŝij − (aik

ˆ̄Wkj − ˆ̄Wikakj )

+A2

(
aikŜkj + Ŝikakj − 2

3
akmŜmkδij

)
, (3.1)

where

τ =
K

ε
, Ŝij = τSij ,

ˆ̄Wij = τW̄ij , (3.2)

D
(a)
ij =

1

K

(
Dij − Rij

2K
Dkk

)
, P = −RijSij , (3.3)

and ε is the turbulent energy dissipation rate and A0–A4 are model constants.
The transport equation for the anisotropy tensor in an inertial frame is obtained

from (3.1) by replacing D̄aij /Dt and ˆ̄Wij by Daij /Dt and Ŵij , respectively. An
algebraic equation for a∗

ij in the inertial frame can be derived by assuming the
weak-equilibrium condition

Da∗
ij

Dt
= 0, (3.4)

and by assuming the following condition for the diffusion term:

D
(a)∗
ij = 0. (3.5)

The resulting equation is the implicit ARSM that accurately treats the Reynolds stress
anisotropy. Its explicit solution can be obtained from linear algebra using integrity
bases (Pope 1975; Gatski & Speziale 1993). The anisotropy tensor is then expressed
explicitly in terms of the mean strain-rate and vorticity tensors as

a∗
ij = fij (Ŝ

∗
km, Ŵ ∗

km), (3.6)

where detailed expressions for fij are given in Wallin & Johansson (2000).
Similarly, in the traditional ARSM for flows in a rotating frame, the conditions

Daij

Dt
= 0, D

(a)
ij = 0, (3.7)

are assumed in (3.1). The left-hand side of (3.1) is now rewritten as

τ

A0

D̄aij

Dt
= − τ

A0

(aikΩkj − Ωikakj ). (3.8)

Since the right-hand side of (3.8) can be incorporated into the third term on the

right-hand side of (3.1) involving ˆ̄Wij , the solution of the ARSM for flows in a
rotating frame can be given by

aij = fij

(
Ŝkm, ˆ̄Wkm − τ

A0

Ωkm

)
, (3.9)

where fij is the same function as in (3.6) for the inertial frame. Since (3.9) involves the
system rotation tensor Ωij , it is not frame-invariant. The non-invariance is because
the weak-equilibrium condition Daij /Dt = 0 is not objective.

To remove this artifact and to make the model frame-invariant Weis & Hutter
(2003) proposed an objective weak-equilibrium condition

D̄aij

Dt
= 0, (3.10)
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instead of Daij /Dt =0. Since the left-hand side of (3.1) vanishes, the solution of the
ARSM for flows in a rotating frame can then be written as

aij = fij (Ŝkm, ˆ̄Wkm), (3.11)

using the same function fij as in (3.6). Equation (3.11) is frame-invariant because it is
expressed in terms of objective tensors only. However, Gatski & Wallin (2004) pointed
out that the condition (3.10) is not correct in actual rotating flows. For example, the
condition Daij /Dt = 0 exactly holds and D̄aij /Dt = 0 is not satisfied in a rotating
channel flow relative to the observer rotating with the channel. They suggested that
a proper weak-equilibrium condition should be

Da
†
ij

Dt

(
≡

∂a
†
ij

∂t
+ U

†
k

∂a
†
ij

∂x
†
k

)
= 0, (3.12)

where a
†
ij is the anisotropy tensor expressed in an appropriate frame representing flow

rotation and curvature (it will be discussed in detail in the next section). In the case of
a rotating channel flow, a†

ij equals aij . They argued that the resulting model expression
is not frame-invariant and that this is justified because the transport equation for the
Reynolds stress is not frame-invariant.

As discussed in the preceding section, we believe that a model expression for
the Reynolds stress should be frame-invariant. The fact that an objective condition
D̄aij /Dt =0 proposed by Weis & Hutter (2003) is incorrect does not necessarily
mean that weak-equilibrium conditions do not have to be objective. We expect that a
proper objective condition can be found. Before seeking such a condition, we explain
the reason why a frame-invariant expression is desirable by comparing the error of
invariant and non-invariant model expressions as follows.

We consider two rotating frames A and B whose coordinates x
(A)
i and x

(B)
i transform

into each other as

x
(B)
i = Pijx

(A)
j , (3.13)

where Pij is an orthogonal transformation matrix. We examine two types of model
expression:

aij = gij (Ŝkm, ˆ̄Wkm), (3.14)

and

aij = gij (Ŝkm, ˆ̄Wkm + CτΩkm), C �= 0, (3.15)

where gij and C are a non-dimensional function and constant, respectively. The
model expressions can contain other objective tensors, but the above expressions are
examined for simplicity. The first-type of expression (3.14) is frame-invariant whereas
the second, (3.15), is not frame-invariant owing to Ωkm, like (3.9). For both types, we
examine the error of a model expression defined as

E =
(
aij − atrue

ij

)2
, (3.16)

where atrue
ij is the true value of the anisotropy tensor. For the first model, the error

E(B) in the rotating frame B is equal to E(A) in the rotating frame A as follows:

E(B) =
(
g
(
Ŝ

(B)
, ˆ̄W

(B))
− atrue(B)

)2
=

(
Pg

(
Ŝ

(A)
, ˆ̄W

(A))
PT − Patrue(A)PT

)2

=
(
g
(
Ŝ

(A)
, ˆ̄W

(A))
− atrue(A)

)2
= E(A). (3.17)
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Here, matrix notation is used to simplify the form of the equation. On the other hand,
for the second model, the error is different in the two rotating frames as follows:

E(B) =
(
g
(
Ŝ

(B)
, ˆ̄W

(B)

+ CτΩ (B)
)

− atrue(B)
)2

=
(
Pg

(
Ŝ

(A)
, ˆ̄W

(A)

+ CτPT Ω (B)P
)
PT − Patrue(A)PT

)2

=
(
g
(
Ŝ

(A)
, ˆ̄W

(A)

+ CτPT Ω (B)P
)

− atrue(A)
)2 �= E(A), (3.18)

because

Ω
(A)
ij − P T

ikΩ
(B)
km Pmj = P T

ik

dPkj

dt
�= 0. (3.19)

These results do not necessarily preclude the second model. To simulate a rotating
flow that has a trivial proper rotating frame, the second model that has a minimal
error in this rotating frame can be used. In fact, the ARSM for a rotating channel flow
using the condition Daij /Dt = 0 in the frame rotating with the channel is appropriate
because this condition exactly holds. However, the second model is not adequate as
a model for more general flows for which a proper rotating frame is not trivial. For
example, a flow in an annulus between inner and outer cylinders rotating about their
common axis at different rotation rates can be simulated in a frame rotating with
either the inner cylinder or the outer one.

To demonstrate the dependence of the second model on the frame of the observer,
we do an a priori test of the models using results of the direct numerical simulation
(DNS) of a turbulent flow in a concentric annulus with inner wall rotation
(Okamoto & Shima 2005). The flow is calculated in the cylindrical coordinate
system (r ,θ ,z) and variables are non-dimensionalized by the radial half-width δ and
the axial global friction velocity uτg =

√
−δdP/dz. The Reynolds number is set to

Re(≡ δuτg/ν) = 150. The radii of the inner and outer walls are given by rin = 2 and
rout = 4, respectively, and the rate of the inner wall rotation is set to Ωz0 = 5. Applying
DNS data for Ui , k, and ε to model expressions, we evaluate the anisotropy tensor
and compare results with the exact value. Figure 1 shows profiles of the anisotropy
arθ obtained from (3.14) and (3.15) as a function of r . The explicit ARSM of Wallin &
Johansson (2000) is used for function gij and the constant in (3.15) is set to C = 9/4.
Three values of the system rotation rate are adopted: Ωz = 5 and 0 correspond to the
systems rotating with the inner and outer walls, respectively, and Ωz = 1.1 represents
the same rotation rate as the mean motion of a fluid at r = 3. Since (3.14) is frame-
invariant, the profiles of arθ for (3.14) in the three systems are the same. On the other
hand, the profiles obtained from (3.15) in the three systems are quite different; the
value is underpredicted for 2.5 <r < 3.5 in the case of Ωz = 5. Even the profile for
(3.14) deviates from the exact value for 2.1 <r < 2.7. The model needs to be improved
in future work; here we concentrate on the dependence of the model on the reference
frame. We evaluate the error of each model using the expression

Erθ =
2

r2
out − r2

in

∫ rout

rin

r

(
arθ − atrue

rθ

atrue
rθ

)2

dr. (3.20)

For the first model (3.14), Erθ =0.089 is obtained in the three systems. In the case
of the second model (3.15), Erθ = 0.089 for Ωz = 0, Erθ = 0.11 for Ωz = 1.1, and
Erθ = 0.79 for Ωz = 5. Therefore, the second model predicts results with different
accuracy depending on the choice of the frame of the observer. On the other hand,
the error of the first model does not depend on the frame; simulation results obtained
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Figure 1. Profiles of anisotropy arθ of a turbulent flow in a concentric annulus with inner cylin-
der rotation. A priori testing of the explicit ARSM was done using DNS data of Okamoto &
Shima (2005). Result obtained from (3.14) that is independent of the rotating frame (◦) and
results obtained from (3.15) for Ωz = 0 (—), for Ωz =1.1 (– – –), and for Ωz = 5 (· · ·) are
compared to the exact value of arθ (+).

in a rotating frame can be transformed to another rotating frame with the same
accuracy. In this sense, the first frame-invariant model is appropriate as a general
model.

4. Weak-equilibrium condition extended to curved and rotating flows
In the preceding section, we showed that a frame-invariant expression is desirable

as a general model for the Reynolds stress. However, Gatski & Wallin (2004) argued
that the weak-equilibrium condition Da

†
ij /Dt = 0 extended to curved and rotating

flows is not objective and the resulting model is not frame-invariant. In this section,
we will show that the condition Da

†
ij /Dt = 0 is in reality objective and hence the

resulting model can be frame-invariant.
First, we describe the extended weak-equilibrium condition in an inertial frame (x∗

i

system). The extension was proposed to take into account the effects of streamline
curvature on turbulence (Girimaji 1997; Gatski & Jongen 2000). The condition
Da∗

ij /Dt =0 exactly holds for stationary parallel mean flows. However, it is known
that this condition is not suitable for curved flows. We then consider a locally defined
rotating frame given by

x
†
i = Tij (x

∗
j − x∗

0j ), (4.1)

where Tij is an orthogonal transformation matrix and x∗
0j is the position of the origin

of the local frame. The x
†
i system is chosen so that |Da

†
ij /Dt | is minimized; the specific

method will be mentioned later. The material derivative in the inertial frame can then
be written as

Da∗
ij

Dt
= T T

ik

Da
†
km

Dt
Tmj −

(
a∗

ikΩ
(r)∗
kj − Ω

(r)∗
ik a∗

kj

)
, (4.2)
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where

Ω
(r)∗
ij ≡ dT T

ik

dt
Tkj = T T

ik Ω
(r)†
km Tmj , (4.3)

is the rotation rate of the x
†
i system expressed in the inertial frame and Ω

(r)†
ij (=

TikdT T
kj /dt) is the rotation rate of the x

†
i system expressed in the x

†
i system. Expecting

|Da
†
ij /Dt | to be small enough, we assume the condition Da

†
ij /Dt = 0, resulting in

Da∗
ij

Dt
= −

(
a∗

ikΩ
(r)∗
kj − Ω

(r)∗
ik a∗

kj

)
. (4.4)

Therefore, the solution of the ARSM for flows in the inertial frame is given in the
form

a∗
ij = fij

(
Ŝ∗

km, Ŵ ∗
km − τ

A0

Ω
(r)∗
km

)
. (4.5)

Once an appropriate x
†
i system is found, the ARSM can be improved by replacing

Ŵ ∗
km by Ŵ ∗

km − (τ/A0)Ω
(r)∗
km in (3.6).

The choice of the x
†
i system affects the adequacy of the model. There are a few

proposals for finding an appropriate x
†
i system. Girimaji (1997) proposed an x

†
i system

based on the direction of the acceleration DUi/Dt . Gatski & Jongen (2000) used an
x

†
i system aligned with the principal axes of the mean strain-rate tensor Sij . Wallin &

Johansson (2002) examined the two methods in more detail for three-dimensional
flows. In this paper, we do not discuss this further; it is assumed that an appropriate
x

†
i system is chosen in some way.
Next, we describe the extended weak-equilibrium condition in a rotating frame (xi

system). The condition (4.4) for the inertial frame can be transformed to the following
condition for the rotating frame:

D̄aij

Dt
= −(aikΩ

(r)
kj − Ω

(r)
ik akj ), (4.6)

where

Ω
(r)
ij = QikΩ

(r)∗
km QT

mj , (4.7)

is the rotation rate of the x
†
i system expressed in the xi system. The resulting solution

can be written

aij = fij

(
Ŝkm, ˆ̄Wkm − τ

A0

Ω
(r)
km

)
, (4.8)

using the same function fij as in (3.6). The above expression is different from (3.9)

because Ωij is replaced by Ω
(r)
ij . In contrast to Ωij the rotation rate Ω

(r)
ij is objective

because it transforms as (4.7). Therefore, the model expression (4.8) is frame-invariant
since it is written in terms of objective tensors only.

It is important to note that Ω
(r)
ij is determined by specifying the x

†
i system

independently of the frame of the observer. Hence the condition Da
†
ij /Dt = 0 and

its expression (4.6) in the rotating frame are objective. For a rotating flow in which
the x

†
i system is trivial such as a rotating channel flow, Ω

(r)
ij = Ωij is obtained for the

observer in the trivial x
†
i system. In this case the expression (4.8) coincides with the

expression (3.9). In general cases the expression (4.8) should be used. The condition
(4.6) and the resulting expression (4.8) are objective; that is, a model making use of
the extended weak-equilibrium condition can be frame-invariant. The adequacy of
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the model is of course coupled to the choice of the x
†
i system, but not to the choice

of the system of the observer. Simulations of curved flows are usually performed in
the inertial frame. Equation (4.8) means that such simulations can be done in any
rotating frame including the inertial frame if the rotation rate Ω

(r)
ij is determined in

an objective manner.
We have discussed Euclidean invariance of a model expression for the Reynolds

stress because it is an important issue not only for the ARSM but also for general
nonlinear eddy-viscosity models. The frame-invariance can be a useful constraint
for theoretical modelling of nonlinear eddy-viscosity models such as the two-scale
direct interaction approximation (Yoshizawa 1984, 1998). A model expression for the
Reynolds stress in an inertial frame that contains the mean vorticity can be extended
to a rotating frame simply by replacing the mean vorticity by the mean absolute
vorticity (Yoshizawa 1998; Nagano & Hattori 2002). The frame-invariance does not
contradict the extended weak-equilibrium condition described by Gatski & Wallin
(2004) and hence the solution of the ARSM extended to curved and rotating flows
can also be expressed in a frame-invariant way.

5. Conclusions
Since the corotational derivative of the Reynolds stress is objective under Euclidean

transformations like the mean absolute vorticity tensor, the transport equation for the
Reynolds stress can be written in a frame-invariant form. It was shown that a frame-
invariant expression is desirable as a general model for the Reynolds stress by compa-
ring the error of model expressions in different rotating frames. As pointed out by
Gatski & Wallin (2004), the objective weak-equilibrium condition proposed by Weis &
Hutter (2003) is not correct in actual rotating flows such as a rotating channel flow.
However, this fact does not necessarily mean that weak-equilibrium conditions do
not have to be objective. It was shown that the extended weak-equilibrium condition
described by Gatski & Wallin (2004) is in reality objective and this condition does
not contradict a frame-invariant model expression for the Reynolds stress. The
frame-invariance can be a useful constraint for theoretical modelling of nonlinear
eddy-viscosity models.

The author is grateful to Dr N. Yokoi for valuable comments and discussions on
the corotational derivative. He would like to thank Dr M. Okamoto for providing
DNS data of a turbulent flow in an annulus. This work is partially supported by a
Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science
(16560315).
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